In remote parts of countries like Democratic Republic of Congo (DRC), where patients often have to walk long distances to get to a hospital, many health centers struggle with a very basic issue—a lack of access to electricity. Doctors Without Borders/Médecins Sans Frontières (MSF) teams have been coping with this logistical challenge for decades, usually relying on diesel generators. But in DRC´s South Kivu province, MSF teams are finding a cheaper, more effective, and sustainable solution through solar power.
In Kigulube, South Kivu, where villages are scattered across the hills, people get around by motorcycle when they can. Otherwise, they have to walk, often for hours. People in Kigulube also suffer from the fighting between armed groups in the area, making movement from one place to another even more difficult.
“Kigulube hospital is in the heart of a jungle, surrounded by bad roads and paths full of stones,” says Miguel Balbastre, an energy specialist with MSF. “People have a hard time getting to any health care post.” In a case of emergencies, it can be very difficult for them to reach the nearest city with a fully equipped hospital.
“The key areas for saving lives in a hospital are the operating room and the intensive care unit, and these require a continuous and reliable power supply,” says MSF’s medical coordinator in DRC, Chiara Domenichini.
Although generators are the most common option when it comes to providing electrical energy in remote areas, they pose a lot of challenges—one is the enormous difficulty of transporting fuel to places that are not always accessible by Land Cruisers or trucks. Transporting diesel by motorcycle or by air is extremely costly and has many logistical difficulties.
Although solar energy has been around for decades, until now, existing power systems and batteries made it unviable in terms of price, capacity, and lifespan for uses such as powering a remote hospital in the hills of South Kivu. Batteries that could have been transported and maintained in such a challenging environment did not have enough storage capacity to guarantee the operation of complex biomedical equipment over long periods.
The availability of new technologies has changed this. “We are using the latest generation lithium batteries that have not even been commercialized on a large scale,” says Balbastre, who is part of the team providing Kigulube hospital with solar power.